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Abstract

European electricity markets have undergone significant deregulation, and time
series are now available on various day-ahead and futures prices. Despite some distri-
butional similarities with asset prices (e.g. high kurtosis of returns, and clear volatil-
ity clustering), electricity has dramatically different stochastic properties to standard
financial products, and even other commodities. Electricity prices are often mean-
reverting, and contain strong seasonal components, which reflect demand and supply
factors. Spot prices can make extreme short-term jumps, due to physical considerations
such as weather and transmission-line overloads. In this paper, we study the stylized
features of the French Powernext daily spot and log return. In order to analyze the
volatility properties of the returns series, we employ a multiplicative deseasonalization
that was introduced recently in studies of intraday financial data. Returns volatility
is split into a deterministic seasonal component, and a stochastic part that can be
modelled using conventional univariate GARCH techniques. We find that there are no
leverage effects in the daily returns (unlike e.g. asset returns and interest rates), and
show that a simple AR(2)-ARCH(1) model, combined with a deterministic intraweek
pattern, provides a good representation of the volatility of deseasonalized returns.
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1 Introduction

Partial or full deregulation of electricity markets has taken place recently in many European
countries, with a view to increasing competition and price transparency (see Joskow, 1997,
and Mork, 2001, for a clear overview of the issues involved). The creation of new energy
exchanges (such as the Dutch APX, German EEX, Scandinavian Nord Pool, and French
Powernext) has made accurate modelling of the stochastic behaviour of electricity spot and
forward prices, and the construction of reliable forecasts and derivative pricing tools, very
important topics for producers, traders, risk managers, and end-users of electrical energy.
However, it is not advisable to borrow models developed for standard financial securities
(e.g. stocks) and storable commodities (e.g. metals, foods, fuels), and apply them in
these new settings, since electricity prices possess stylized characteristics that such models
cannot capture, and that are not often seen in other financial markets.

Electricity is a “physical” consumption product, or flow commodity, which results from
conversion of various forms of energy (e.g. nuclear, thermal). Electricity is continuously
generated and consumed, and meaningful quantities virtually cannot be stored efficiently
at reasonable cost – hydroelectric storage schemes are especially expensive, for instance.
This leads to a delicate load-generation balancing act, whereupon relatively small changes
in demand (e.g. unexpected periods of hot weather, with increased use of cooling systems),
which cannot be instantaneously satisfied due to production constraints; or supply (e.g.
technical problems, such as power plant failure and transmission-line overload, combined
with inelastic demand), lead to sudden large spikes in the spot price, that cannot be
smoothed out using inventories. These spikes are typically short-lived and act over several
days, contributing to periods of very high volatility (which are periodically recurrent in
some markets, e.g. Geman and Roncoroni, 2006), after which the spot price returns rapidly
towards its pre-spike level, rather than leading to sustainable higher prices. The degree
of volatility in electricity spot markets far exceeds that observed in very volatile stock or
commodities (e.g. natural gas, crude oil) markets.

Major load and generation problems often arise simultaneously, creating high risks
and exacerbating spikes. These can be extreme, e.g. between 10 and 11 August 2003,
spot prices on the Dutch APX exchange rose by over 3,000% (from 19.18 euros/MWh
to 660.34 euros/MWh), only to return to original levels 5 days later.1 Less dramatic
spikes tend to be observed in those markets that have efficient transmission networks, and
diversified methods of generation. The spike behaviour poses particular identification prob-
lems for simple stochastic mean-reverting jump diffusion models, which commonly com-
bine an Ornstein-Uhlenbeck process with an additive upward Poisson jump (usually with
lognormally-distributed jump magnitudes), and maximum-likelihood estimation. These
models generally require a very high level of mean-reversion following a price spike, which
distorts the model performance in non-spike periods (see Huisman and Mathieu, 2003, for

11 euro/MWh equals the cost of running approximately 16,700 standard 60W light-bulbs for 1 hour.
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a critique), while paucity of historical data can result in imprecise parameter estimates.
Applications of this class of models to electricity markets include Escribano et al (2002),
Lucia and Schwartz (2002), Cartea and Figueroa (2004) and Weron et al (2004). See
Borovkova and Permana (2004) for further discussion, and for a generalization of the drift
term, in which the mean-reversion rate can be a nonlinear function of the distance from the
seasonal average price. In a comprehensive paper, Geman and Roncoroni (2006) address
many issues related to electricity spot price modelling (and spike behaviour in particular),
using a level-dependent signed-jump diffusion model, with time-varying jump intensity.

Electricity generation is subject to natural phenomena (most often, climate conditions
such as temperature or rainfall), which is manifested in a marked seasonal dependence in
the data, the pattern of which is market-specific. Demand-driven annual seasonality can
arise from fluctuating temperature, or number of daylight hours. Intraweek seasonality
can be caused by a lower industrial demand at night and weekends, relative to weekday
working hours (Wilkinson and Winsen, 2002, illustrate the dependence of average intraday
spot prices on day-type, for the Australian New South Wales market). In some markets,
supply-side seasonality is also important, e.g. hydroelectric generation, which has an im-
pact on the Scandinavian Nord Pool exchange, is affected by rainfall and snowmelt. It
is common practice to model deterministic periodic patterns such as annual seasonality
using a linear trend and one or more sinusoidal functions (with distinct periods to re-
flect, say, annual and six-month periodicity, due to cold winters and hot summers – more
generally, a Fourier series expansion could be used), and intraweek seasonality using a
piecewise-constant function (e.g. Pilipović, 1998).

Electricity usually also shows notable intraday seasonality, e.g. weekend hourly prices
may be affected by demand surges at midday and evening mealtimes, while weekday and
weekend intraday patterns may also differ. Bottazzi et al (2004) examine Nord Pool intra-
day patterns, and model the distribution of log returns using the general Subbotin distri-
bution, which nests the Laplace, Gaussian and uniform, among others. See also Longstaff
and Wang (2004), for a detailed empirical analysis of real-time hourly spot and day-ahead
intraday behaviour on the US Pennsylvania–New Jersey–Maryland (PJM) market.

Electricity spot prices are often found to be mean-reverting (Weron and Przyby lowicz,
2000, Atkins and Chen, 2002, Lucia and Schwartz, 2002, Simonsen, 2003, and Resta,
2004, document this empirically for electricity, and more generally mean-reversion of en-
ergy commodities is examined by Schwartz, 1997). Simply, this suggests that there is an
equilibrium level to which spot prices will return, following a temporary jump, and which
reflects economic and fundamental factors such as the marginal cost of production and
seasonal weather conditions – the equilibrium may be constant, periodic, or periodic with
a trend. Some markets, such as Nord Pool, are characterized by hourly spots with a high
degree of long memory, and hyperbolically decaying autocorrelation functions (Carnero
et al, 2003, and Haldrup and Nielsen, 2005). Time series from electricity spot markets
generally exhibit volatility clustering, that is, periods of high volatility tend to be followed
by periods of high volatility, and quiet days tend to be followed by quiet days (e.g. Atkins
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and Chen, 2002, Resta and Sciutti, 2003, and Knittel and Roberts, 2004).
The unbundling of distribution and generation leads to close links between spot prices

and the underlying demand-supply mechanism. Routledge et al (2001) develop a com-
petitive rational expectations framework for non-storable electricity and storable potential
fuels. Various empirical features follow directly from their equilibrium analysis, including
skewed spot price distributions, price-dependent heteroscedasticity – with higher (lower)
volatility when prices are higher (lower), and unstable electricity-fuel correlations. They
show that skewness and heteroscedasticity are immediate consequences of inelastic demand,
combined with a possibly discontinuous supply curve (the “supply stack”) – which is flat
at low outputs (corresponding to baseload generation using efficient and cheaper power
sources) but becomes very steep at high outputs (corresponding to peak generation using
costly and less efficient standby power sources). Capacity and transmission limits dictate
that the supply stack will be vertical at maximum output. Hence, demand changes at low
output (and low price levels) will have a relatively small impact upon price (low volatility),
while demand changes at high output (and high price levels) will result in high price changes
(high volatility). We may then expect the proximity of a system to generation capacity,
and/or the spot price level, to drive volatility – and this will of course be determined by
the physical considerations discussed above.

The outline of the paper is as follows. Section 2 briefly reviews the functioning of
the French Powernext day-ahead market. Section 3 describes the stylized features of the
Powernext day-ahead spot and log returns series, and reports some preliminary descriptive
statistics and tests for unit roots and autocorrelation. This exchange is of some interest,
since the market price is derived from a blind auction procedure, and the resultant time se-
ries is virtually unstudied in the literature. We see that there is unusual volatility clustering
in the returns, and we focus on this effect rather than attempting to explicitly model the
electricity spot price (see references in text, and footnote 2 below). In Section 4, we proceed
to develop a univariate GARCH model of returns volatility. We first employ a determin-
istic volatility deseasonalization that was made popular in the context of high-frequency
intraday data. The stochastic part of returns volatility can then be modelled successfully
with standard symmetric GARCH techniques. We use an AR(2)-ARCH(1) model for the
(volatility) deseasonalized returns, with a deterministic (sinusoidal) intraweek pattern, to
construct one-step-ahead volatility forecasts. Robust misspecification tests indicate that
the conditional mean and variance functions provide satisfactory representations of the
data, and volatility is shown to be only mildly persistent. Section 5 concludes.

A number of studies (in a rapidly expanding literature) have now examined models for
electricity spot prices, forward curve dynamics, and derivative pricing.2 However, much

2Aside from (Brownian, possibly multi-factor) jump diffusion spot models, other approaches include
regime switching models (e.g. Huisman and Mathieu, 2003, and Weron et al, 2004), which permit explicit
modelling of “normal” and “spike” regimes and their associated speeds of mean-reversion, Lévy-based
models (e.g. Deidersen and Trück, 2002), and models based upon economic fundamentals, with explicit
modelling of the aggregate demand and/or supply curves (e.g. Barlow, 2002, who derives a jump-free
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less attention has been given to modelling the volatility observed on electricity returns, and
this paper is among the first empirical illustrations to use the French Powernext market.
We extend the literature by applying a deterministic annual/intraweek volatility deseason-
alization to electricity returns, and by showing – surprisingly – that the stochastic part of
returns volatility can be modelled using a simple ARCH(1) process. Our method also ap-
pears to be robust to removal of the largest spikes from the spot/returns series, in contrast
to some existing literature, which models the spike generation mechanism explicitly.

2 The market and data

Powernext SA was created on 26 November 2001, as the first French power exchange, fol-
lowing the 10 February 2000 application into French law of the 1996 European directive
96/92/EC on restructuring of previously monopolistic European electricity markets. It rep-
resents a centralized, organized, anonymous exchange for a variety of day-ahead electricity
contracts (Powernext Day-AheadTM, or PDA) and medium-term futures (the Powernext
FuturesTM market was incorporated on 18 June 2004). In this paper, we focus on the PDA
market. Market participants trade in standardized hourly contracts that commit them to
provide to the French transmission network (the restricted geographical area is referred to
as a “hub”) a specified volume of physical electricity throughout a given hour, or to with-
draw it, at a common and recognized market price. The PDA is essentially open to market
operators that have been authorized to buy/sell electricity under their national law, and
who pay fixed entrance and annual fees, and variable delivery/trading and clearing fees per
volume traded. As of July 2004, there were 41 active members, including energy companies
and investment banks.

The underlying is physical electricity, traded for next-day (day t + 1) delivery over 24
hourly intervals, and this gives rise to the hourly “spot” market clearing price. The daily
baseload spot is calculated as the mean of the 24 distinct hourly spots, and is the series
studied here. Trading takes place during a “pre-auction” phase, which runs from 17:00
CET on Wednesday the previous week to 11:00 CET on the trading day itself (day t).
Trading occurs 24 hours a day, 7 days a week, and including statutory holidays, unlike
e.g. NYSE and Nasdaq.3 Members submit an electronic order form via the internet, which
contains a maximum of 64 price/quantity combinations, for each of the 24 one-hour periods
of the delivery day, within a minimum and maximum price of 0 euros and 3,000 euros. Bids
for purchase (sale) are represented by positive (negative) volumes respectively, and only

diffusion model that can exhibit spikes, and Bessembinder and Lemmon, 2002). Forward price dynamics and
joint spot/forward models have been examined by, inter alia, Koekebakker and Ollmar (2001), Manoliu and
Tompaidis (2002), Borovkova (2004) and Cartea and Figueroa (2004). Electricity derivatives are discussed
by Pilipović (1998), Eydeland and Geman (2000), Barone-Adesi and Gigli (2002) and Vahviläinen (2002).

3See Bauwens and Giot (2001, pp 11-17) for discussion of the hybrid (market-maker and order book) New
York Stock Exchange (NYSE) and the automated quote-driven National Association of Securities Dealers
Automated Quotation (Nasdaq). For extensive details, consider www.nyse.com and www.nasdaq.com.
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integer volumes are traded. Volume and price ticks are 1 MWh and 0.01 euros/MWh.
Between any two prices entered into the order form, all volumes are assumed to be linear.
Order prices are entered to 2 decimal places, while traded quantities are allocated based
on the exact equilibrium price. The monthly volume on the PDA exceeded 1.25 TWh (1
terawatt hour=1 million MWh) in July 2004.

Each daily auction (day t) is followed by an approximately 15 minute validation phase,
during which the purchase/sale bids are aggregated for each hourly period, and the market
clearing price (or PDA “spot”) and volume are calculated by linear interpolation. The
aggregation is performed by SAPRI, a trading system that is operated by Nord Pool, and
acts as a centralized order book, and the concentration of orders via auction is designed
to maintain liquidity. Following validation, the settlement transaction amount is the spot
price multiplied by the volume traded, taken as a linear interpolation between the two
price/volume combinations that contain the market clearing price, on the most recent order
form sent by the member for that day. The “quoted” market clearing price is rounded to 3
decimal places. The aggregated buy/sell curves are communicated to members, although
the individual order books are withheld, which ensures anonymity. LCH.Clearnet SA acts
as a financial counterparty between the member and Powernext, and physical delivery or
withdrawal from the French hub is managed by the transmission system operator (RTE).

The above is a slight simplification of actual events, and serves to illustrate the blind
auction procedure. While hourly products are a benchmark in electricity markets, it is
also possible to trade standardized block bids on the PDA (e.g. hours 1–4, hours 5–8,
hours 1–24, hours 9–20), subject to some restrictions. The market clearing price is in
fact calculated from both single and block bids, where the block bids are either entirely
executed or entirely rejected, according to a decomposition and iterative method. Of crucial
importance from the above discussion is the observation that a classical spot market cannot
exist for electricity, since the feasibility of the schedule must be verified in advance of
delivery. We note that considerable volumes of spot electricity are also traded in bilateral
agreements between generation companies and buyers.

The data under study consist of the average PDA daily baseload electricity spot prices in
euros/MWh, which was collected and provided by Powernext SA. The in-sample estimation
period runs across every day from 27.11.2001 (when the exchange first opened) through
to 21.06.2004, including weekends and holidays, which yields a total of T = 938 daily
observations. For further details on the specifics of the Powernext market and available
products, the reader is referred to www.powernext.fr.

3 Empirical features of electricity daily spot and returns

Time series of daily spot prices St and one-day log returns Rt = lnSt − lnSt−1 are plotted
in Figures 1 and 2, which suggest a high level of mean-reversion, and a number of ex-
treme spikes. Summary statistics are reported in Table 1, which indicates highly volatile,
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positively-skewed and leptokurtic (unconditional) spot and returns, while Jarque-Bera tests
strongly reject normality at all conventional significance levels (see Figure 3). The stan-
dard deviation for the spot price exceeds 15 euros/MWh, which is almost 60% of the mean
value. We find that 28 (8) spot prices exceed 50 (75) euros/MWh. Of these 28, all but
one occur in winter (December, January, February) or summer (June, July, August), and
all occur on weekdays, when demand is high. The 10% and 90% empirical tail quantiles
of St are 14.91 and 35.54 euros/MWh respectively. The highly right-skewed spot, and lep-
tokurtic returns, are consistent with many empirical findings (we verified this using APX,
EEX and Nord Pool daily spot data over similar time periods), and reflect the spike com-
ponent in the price process. Daily mean spot prices are 21.21, 29.28 and 30.01 euros/MWh
over the 1–year subsamples 01.01.2002–31.12.2002, 01.01.2003–31.12.2003 and 01.06.2003–
31.05.2004, suggesting a general rise in average prices over the sample period. Cramér-von
Mises and Anderson-Darling empirical distribution tests reject the nulls that the spot and
return are well approximated by common distributions such as chi-squared, exponential,
gamma, logistic and Pareto.

mean median max. min. std. dev. skew. kurt. AC1

St 26.04 24.41 310.37 4.93 15.12 9.12 148.42 0.439
Rt −1.4× 10−4 −0.032 2.78 −1.92 0.37 0.94 8.55 −0.185

Table 1 – Summary descriptive statistics for daily spot St and daily log return Rt

The returns and squared returns are clearly not independent, and the first-order auto-
correlation coefficients of Rt and R2

t equal −0.185 and 0.284 respectively, and are statis-
tically significant (this is confirmed by application of Brock-Dechert-Scheinkman tests).4

Seasonality is present in both series, and the autocorrelation function attains a local max-
imum every 7 days (for instance, there is a positive relationship between log returns and
returns lagged 7 days, with a simple correlation of 0.43). Moreover, the Ljung-Box port-
manteau statistics for up to fourteenth-order serial correlation in Rt and R2

t are 559.97 and
117.77, and are highly significant when compared to the limiting chi-squared distribution.
The pronounced periodicity and persistence is also evident in the correlograms of Rt and
R2

t (Figures 4 and 5; see also Weron, 2000, Figure 4). These results strongly suggest both
volatility clustering in daily returns, and a seasonal volatility effect.

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests on St and Rt

are significant at the 1% level, while the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
4First-order autocorrelations AC1 in Table 1 are similar to those for some other European markets,

including the Dutch APX over 02.01.2001–21.06.2004 (spot 0.538, return −0.188) and German EEX over
17.06.2000–21.06.2004 (spot 0.535, return −0.172). Other markets present quite different results, e.g.
Scandinavian Nord Pool over 01.01.1999–13.06.2004 (spot 0.977, return −0.130), that are rather similar to
those for other financial time series such as stocks, e.g. consider spot AC1s over an identical sample period
to Powernext, computed on the mean of open–close prices, for Microsoft (Nasdaq) 0.995, Yahoo! (Nasdaq)
0.995, Continental Airlines (NYSE) 0.996, and Metro-Goldwyn-Mayer (NYSE) 0.990. Note that weekends
and holidays reduce the sample size for these NYSE/Nasqaq stocks to approximately 645.
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for stationarity rejects the null at the 5% level for St and strongly does not reject the null
for Rt.5 This evidence suggests that the returns series is stationary, while conflicting spot
unit root and stationarity test results are perhaps symptomatic of long-range dependence.

4 Volatility modelling

Longstaff and Wang (2004, especially Table 7 and Figure 5) report an “inverted-U” intra-
day pattern of unconditional volatility (standard deviation) of daily changes in day-ahead
PJM prices, while Weron (2000, especially Figure 3) illustrates seasonal volatility for the
California Power Exchange spot market. In a different context, the empirical market mi-
crostructure literature contains many examples of intraday seasonal volatility patterns in
forex and equity markets. For instance, Baillie and Bollerslev (1991) examine returns
volatility on four exchange rates (vis-à-vis the US dollar) using six months of continuously
recorded hourly data across different world markets. They report a pattern of intraday
volatility that corresponds to the open and close of the international financial markets
upon which the exchange rates are quoted. Similarly, Andersen and Bollerslev (1997b,
especially Figure 2), and Barndorff-Nielsen and Shephard (2002, especially Figure 1(a)),
document strong intraday seasonal volatility of the US dollar/German deutschemark using
long very-high-frequency time series, which is clearly visible in the autocorrelation func-
tion of absolute or squared 5–minute returns. The “U-shape” of equity market intraday
volatility was discussed by Wood et al (1985) and Harris (1986). In electricity markets,
this periodicity has a natural as well as an institutional basis.

When analyzing volatility, it is important to account appropriately for such strong
intraday (or more generally, seasonal) patterns. Some techniques of univariate deseason-
alization, based upon periodically-varying volatility weights, were implemented by, inter
alia, Andersen and Bollerslev (1997a), and are further discussed by Breymann et al (2003).
We choose a simple volatility deseasonalization, based on work by Giot (2000). We then
model volatility in the context of a standard GARCH framework, although various exten-
sions are possible. Pronounced volatility clustering is a salient feature of many financial
series, and has sparked a huge literature. For excellent surveys of GARCH techniques and
applications to finance, see Bollerslev et al (1992), Bera and Higgins (1993), Bollerslev et
al (1994), Engle (2001, 2002, 2004), Engle and Patton (2001) and Li et al (2002).

4.1 Seasonal volatility pattern and deseasonalized log returns

Given the autocorrelation found in squared log returns, we investigate a deterministic
annual/intraweek volatility pattern. We calculate the mean value ϕt (i; j) of the squared
log returns observed on day i and month j, where i = 1 (Mon), 2 (Tue),. . ., 7 (Sun), j = 1

5We use the Schwarz Information Criterion to select lag length for the ADF test, and include a constant
in the regression. We use Bartlett kernel spectral estimation when implementing the PP and KPSS tests.
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(Jan), 2 (Feb),. . ., 12 (Dec). For example, there are 12 datapoints that are Mondays in
January. Summing the squared log returns observed on these dates and dividing by 12, we
obtain ϕt (1; 1). Repeating this procedure for all i, j, we obtain Table 3. It is apparent that
average squared returns on Mondays are significantly greater than on other days, followed
by returns on Sundays (in some cases, Saturdays). There is some tendency for average
squared returns to be higher during summer months, although this is not conclusive. The
intuition is that business activities follow a weekly cycle, with lower levels at weekends, and
hence a large negative return on Saturdays/Sundays, and higher levels on working days,
giving a high positive return on Mondays. These significant calendar effects must be taken
into account, and we define the (volatility) deseasonalized log price return at time t as

R̃t (i; j) := Rt (i; j) [ϕt (i; j)]−1/2 (1)

(see Figure 6). This approach to computing deseasonalized log returns was discussed
by Giot (2000) and Bauwens and Giot (2001), and applied to high-frequency financial
data. Interestingly, (1) renders the unconditional deseasonalized returns R̃t approximately
normal (see Figure 7, and also Andersen et al, 2001, especially Figure 1, for an analogous
finding when daily equity returns are standardized by realized volatility).

mean median max. min. std. dev. skew. kurt. AC1

R̃t −0.11 −0.14 3.50 −3.33 0.99 0.14 3.12 −0.104

Table 2 – Summary descriptive statistics for deseasonalized daily log return R̃t

4.2 An ARCH model

Although the autocorrelation function in Figure 9 indicates that “obvious” seasonality has
been removed from the squared returns (similarly, see Breymann et al, 2003, Figures 3
and 5), the Ljung-Box statistics for up to fourteenth-order serial correlation in R̃t and R̃2

t

are 368.13 and 73.92, and are again highly significant. Several authors have indicated the
importance of correctly modelling the conditional mean function when applying GARCH
techniques to electricity spot prices, e.g. Escribano et al (2002) and Karakatsani and
Bunn (2004). Failure to address this issue can lead to erroneous GARCH results, such as
near-integrated GARCH (IGARCH), due to the impact of extreme price spikes.

In this paper, we do not model the spike process explicitly, and instead follow two
directions. Firstly, we do not treat spikes, but deseasonalize volatility prior to modelling
periodicity in (volatility) deseasonalized returns and estimating GARCH. Secondly, we
remove large spikes from the spot price process, before following the same procedure as
before. We found that it was very difficult to specify a sensible GARCH model if the
periodicity in the spot (return) was not explicitly modelled (compare this to simple financial
applications, where it is adequate to assume a constant conditional mean, e.g. Engle and
Patton, 2001, using 12 years of daily returns data on the Dow Jones Industrial Index).



10

There is little evidence of a significant annual periodicity in the level of deseasonalized
returns. However, spot prices are clearly higher on weekdays than at the weekend, and
there is evidence that Friday prices are lower than those on Monday to Thursday. This
deterministic weekly periodicity is also present in the returns series (Figure 8). We model
this flexibly using two sinusoidal functions (Figure 10), and the correlogram of the volatility
deseasonalized returns, filtered to remove weekly periodicity, is given in Figure 11. The
remaining autocorrelation in R̃t is captured by including an AR(2) term in R̃t. An ARCH-
LM(7) test gives the highly significant FARCH = 12.05, and hence we specify the model

R̃t = θ0 + θ1 cos
[

2π
7

(t− θ2)
]

+ θ3 cos
[

4π
7

(t− θ4)
]

+ ψ1R̃t−1 + ψ2R̃t−2 + εt, (2)

where θ0 is the level of the deseasonalized returns, θ1 and θ3 are amplitudes of a 7-day and
3 1/2-day sinusoid, θ2 and θ4 are timeshifts, and εt ∼ GARCH(p, q).

We estimated model (2) for p ∈ {0, 1, 2, 3, 4, 5} and q ∈ {0, 1, 2, 3, 4, 5}, using both
the Berndt–Hall–Hall–Hausman and Marquardt optimization routines. Robust QMLE
standard errors are not available. We chose the GARCH model that gave sensible, and
significant parameter estimates, and which minimized the Schwarz Criterion (SC = 2.3303).
Surprisingly, given the prevalence of GARCH-type behaviour in applied finance studies,
we found ARCH(1) to be the order which satisfied these conditions, and which generally
converged after the least iterations, with the more stable Marquardt algorithm. Hence, the
conditional variance for deseasonalized returns is

ht = ω + α1ε
2
t−1, (3)

where εt = εth
1/2
t are residuals from (2), and εt are Student’s t(r) innovations. The

implication is that the volatility of the deseasonalized returns process is a function of
the error made in forecasting the previous day’s return. Note that volatility persistence
increases as α1 approaches unity. Estimated parameters and standard errors are:

ω̂ α̂1 r̂

0.4472 0.3273 5.9220
(0.0399) (0.0799) (1.3963)

θ̂0 θ̂1 θ̂2 θ̂3 θ̂4 ψ̂1 ψ̂2

−0.1591 −0.7335 52.9226 −0.4249 −2.3518 −0.3189 −0.0767
(0.0233) (0.0358) (0.0627) (0.0350) (0.0475) (0.0348) (0.0301)

and R2 = 0.36. The estimated conditional variance (and other) parameters are all highly
significant. The adequacy of (2) and (3) was examined using an ARCH–LM(7) test, which
gave an insignificant value of FARCH = 1.29, indicating that all GARCH effects have
successfully been removed, and that (2) and (3) track the short-run interdaily volatility
dependencies quite well.
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We calculate the unconditional variance as hu = ω̂(1 − α̂1)−1 = 0.6648, which cor-
responds to an average annualized (stochastic component of) volatility of approximately
((365)(0.6648))1/2 ≈ 15.6%. The volatility half-life is 0.62 days, which is very mildly per-
sistent (a t-test of a unit root in the conditional variance equation gives |τ | = 8.42 > 1.96,
and we reject the IGARCH null). This makes intuitive sense, since volatility is driven by
short-term imbalances in demand and supply. It is straightforward to combine (1) and (3)
to calculate volatility for the raw returns Rt as (htϕt (i; j))1/2. The in-sample forecasting
ability of this model is illustrated in Figure 12, where ht is plotted against R̃2

t (the latter
acts as a proxy for ex post volatility).

4.3 The absence of leverage effects

The symmetric relationship between lagged shocks and conditional variance can be illus-
trated conveniently using a news impact curve (Engle and Ng, 1993), given directly from
(3) as hNIC

t = 0.4472 + 0.3273ε2t−1. We check for the presence of asymmetric GARCH ef-
fects using the Engle-Ng sign bias (SB) test, negative and positive size bias (NSB and PSB)
tests, and a joint LM test. The SB test examines the possibly asymmetric impacts that
shocks of different sign have on volatility. The NSB (PSB) test investigates the possibly
different impacts that negative (positive) shocks of different magnitude have on volatility.
We define a dummy variable

S−t =
{

1 if ε̂t < 0
0 if ε̂t ≥ 0

and define negative and positive residuals as ε̂−t = S−t ε̂t and ε̂+t =
(
1− S−t

)
ε̂t respectively.

We then estimate (using standardized and ordinary residuals)

ε̂2t = κ0 + κ1S
−
t−1 + κ2ε̂

−
t−1 + κ3ε̂

+
t−1 + error, (4)

and test SB, NSB and PSB by using the t-ratios on κ1, κ2, and κ3 in (4),

κ̂0 κ̂1 κ̂2 κ̂3 κ̂2 + κ̂3

1.0740 −0.0718?? 0.0511?? −0.1446?? −0.0935??

(0.1254) (0.1852) (0.1312) (0.1263) (0.1821)

where ?? indicates insignificance at the 10% level, and White’s heteroscedasticity-consistent
standard errors are given in parentheses. The SB, NSB and PSB tests are highly insignifi-
cant, which suggests that there are no asymmetric effects. Moreover, a joint LM test of no
asymmetry, computed from (4) as TR2 = 0.95 < 7.81 = χ2

0.95 (3) , does not reject the null.
We corroborate these findings using asymmetric GARCH. A threshold TGARCH(1,0,1)

extension of (3) was selected, following the same procedure as above, using conditional mean
specification (2), and with Student’s t(r) innovations, i.e. ht = ω + α1ε

2
t−1 + λ1S

−
t−1ε

2
t−1.

Estimated parameter values change slightly, and are not reported here. The “asymme-
try” parameter λ̂1 = 0.0188??(0.1348) is highly insignificant, suggesting that there is no
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(first-order) leverage effect. Similarly, we selected exponential EGARCH(1,0,1) and power
PGARCH(1,1,1) models. Conditional variance specifications are, with asymmetry param-
eters γ1 and φ1, ln(ht) = ω + α1|εt−1h

−1/2
t−1 | + γ1εt−1h

−1/2
t−1 and h

δ/2
t = ω + α1(|εt−1| −

φ1εt−1)δ + β1h
δ/2
t−1. We find that δ̂ = 3.8315(1.6510), while γ̂1 = 0.0381??(0.0593) and

φ̂1 = −0.0038??(0.0715) are again highly insignificant. The conditional variance of the
daily PDA deseasonalized returns does not respond asymmetrically to positive and nega-
tive shocks, unlike e.g. asset prices (Nelson, 1991) and interest rates (Chan et al, 1992).

4.4 Spike filtering, volatility forecasts, and long-memory

We identified the 8 spot price dates that exceeded 75 euros/MWh, as Mon 17 – Wed 19
Dec 2001, Tue 15 – Wed 16 July 2003, Tue 22 – Wed 23 July 2003, and Mon 11 Aug 2003
(the latter represents the extremely large value of 310.37 euros/MWh). For each of these
dates, we replaced the “spikes” with the mean of the spot prices given on the day prior to
and following the spike period. We then followed the volatility deseasonalization procedure
above to give a large-spike-filtered ϕt(i; j), where the bold values in Table 3 are changed.
Recalculation of R̃t and estimation of (2) and (3) gave:

ω̂ α̂1 r̂

0.4621 0.2624 6.2780
(0.0402) (0.0707) (1.5762)

θ̂0 θ̂1 θ̂2 θ̂3 θ̂4 ψ̂1 ψ̂2

−0.1508 −0.7636 −3.0668 −0.4351 −2.3337 −0.3411 −0.0838
(0.0235) (0.0362) (0.0620) (0.0353) (0.0470) (0.0345) (0.0308)

and R2 = 0.38. An ARCH–LM(7) test gave a borderline value of FARCH = 2.11. The
unconditional variance and half-life of the large-spike-filtered series were calculated to be
0.6265 (corresponding to an average annualized - stochastic component of - volatility of
approximately 15.1%), and 0.52 days. We see that these values are quantitatively very
similar to those above, and that removal of (even very large) spikes from the spot series does
not have the same importance as in other studies. We conclude that our deseasonalization
of the returns volatility, and correct specification of the conditional mean, serve to alleviate
the problems that could otherwise require explicit modelling of the spike process.

Andersen and Bollerslev (1998a, 1998b) show that there is no contradiction between
the ability of a GARCH model to provide accurate volatility forecasts, and poor predictive
power for daily squared returns. We assess this here, by estimating the Mincer-Zarnowitz
equation R̃2

t = π1 + π2ht + error, for both (a) deseasonalized R̃2
t and (b) large-spike-

filtered deseasonalized R̃2
t . Estimated parameters follow, with White’s standard errors in



13

parentheses:
π̂1(a) π̂2(a) π̂1(b) π̂2(b)
0.4345 0.8542 0.3253 1.0686

(0.1243) (0.2016) (0.1579) (0.2692)

Estimated R2 is 0.052(a) and 0.048(b), suggesting that the AR(2)-ARCH(1) model has
low explanatory power, and explains at best 5% of the variability of squared deseason-
alized returns (a similar result is obtained by computing the squared sample correlation,
corr(•, •)2, between the one-step-ahead daily volatility forecast and an ex post measure of
volatility, such as |R̃t| or R̃2

t – for example, 100 × corr(ht, |R̃t|)2 ≈ (a) 3.9% and (b) 3.2%
respectively, confirming the previous findings). Essentially, the difficulty is that daily |R̃t|
and R̃2

t are noisy estimates of underlying latent volatility. Andersen and Bollerslev (1998a,
1998b) show that use of high-frequency data to construct an improved ex post measure of
latent volatility (such as cumulative absolute intraday returns) explains the paradox, and
greatly increases explanatory power. We do not examine hourly returns data here, since
these exhibit very complicated intraday season- (and time-of-week-) dependent periodici-
ties that would need to be accounted for in a similar spirit to the deseasonalization of daily
returns, but leave this as an issue for future research.

We also follow Andersen and Bollerslev (1997b, 1998b), in checking whether it is rea-
sonable to assume hyperbolic decay of the sample autocorrelation function ACm(•) of R̃2

t ,
in which case fractionally-integrated or long-memory volatility processes may be appropri-
ate. It is clear from Figures 4, 5 and 8 that the autocorrelation functions of Rt, R2

t and
R̃t are dominated by intraweek periodicities. This is not the case for the autocorrelation
function of deseasonalized squared returns (Figure 9). Hence, we estimate the degree of
fractional integration d simply by fitting a hyperbolic decay to ACm(R̃2

t ) via the regression

ln(ACm) = ξ0 + ξ1 ln(m) + error, m = 1, . . . ,M,

where d̂ = (ξ̂1 + 1)/2. We use M = 200 lags, although a more detailed analysis would
require a significantly larger number. Estimated parameters are as follows, with White’s
standard errors in parentheses, and ŝe(d̂) = ŝe(ξ̂1)/2:

ξ̂0 ξ̂1 d̂

−2.8114 −0.2111 0.3945
(0.2924) (0.0673) (0.0337)

An integrated process of order I(d), where 0 < d < 1/2, will eventually have all positive
autocorrelations ACm, and these will decay at a hyperbolic rate. Since d̂ = 0.3945, this
suggests that ACm(R̃2

t ) ∼ m2d−1, for m large. This seems to be in contrast to the low
ARCH(1) volatility persistence found above. Hence, future work could consider the case
for fractionally-integrated FIGARCH-type extensions of the results in this paper (see e.g.
Baillie et al, 1996).
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5 Conclusions

In this paper, we combine a deterministic multiplicative annual/intraweek pattern for elec-
tricity volatility with a sinusoidal intraweek level, and an AR(2)-ARCH(1) model for the
stochastic part of returns volatility. This procedure builds upon recent work on intraday fi-
nancial data (which has not previously been applied to the unusual volatility that is present
in electricity markets), while taking account of certain stylized features of the market price
(notably, weekly seasonality). We find that all estimated parameters are highly significant,
and that Powernext PDA electricity volatility is only mildly persistent. Moreover, there are
no leverage effects in the stochastic part of volatility, which contrasts sharply with many
results on “standard” financial series such as asset prices and interest rates. Our work
provides some new insights into the nature, and modelling of, electricity market volatility.

Various extensions of this work are possible, and include (a) modelling the volatility of
hourly spot (returns) data, which will involve treatment of the very complicated (season
and time-of-week dependent) intraday patterns, (b) further investigation of the volatility
deseasonalization in this context, including assessment of whether transformation of the
unconditional returns to approximate normality is common across different markets, (c)
assessment of the aggregational properties of GARCH-type techniques using this data (es-
pecially between daily and hourly data), (d) gauging the impact of exogenous variables on
electricity volatility, including temperature and volume, see e.g. Lamoureux and Lastrapes
(1990), (e) use of hourly data to provide improved ex post volatility measurements, (f)
detailed assessment of possible long-memory dependence in both the spot series, and in
volatility. We leave these issues for future research.
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Jan Feb Mar Apr May Jun
Mon 0.172549 0.153134 0.203704 0.362829 0.410702 0.634206
Tue 0.150761 0.021786 0.012664 0.167280 0.076427 0.346457
Wed 0.093718 0.006296 0.014559 0.010824 0.037801 0.065023
Thu 0.084144 0.018015 0.015025 0.007921 0.280272 0.064096
Fri 0.039971 0.033769 0.017683 0.014563 0.094877 0.067420
Sat 0.102417 0.048805 0.049265 0.048285 0.105214 0.190565
Sun 0.062880 0.034773 0.074696 0.255434 0.142691 0.173772

Jul Aug Sep Oct Nov Dec
Mon 0.544370 1.301646 0.358908 0.355290 0.466470 0.451605
Tue 0.122955 0.516680 0.075058 0.017599 0.030139 0.067990
Wed 0.043689 0.014402 0.031409 0.007924 0.032166 0.052622
Thu 0.115656 0.052249 0.008192 0.019330 0.017346 0.146491
Fri 0.046879 0.029561 0.003446 0.035347 0.039659 0.073754
Sat 0.100539 0.078190 0.109275 0.094008 0.220945 0.081298
Sun 0.125789 0.117001 0.116502 0.077310 0.143587 0.190638

Table 3. Mean value ϕt(i; j) of squared log daily returns on day i and month j,

where values in bold change following removal of the 8 largest spikes from the
spot (returns) series – new values are not reported here.
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Figure 1: Spot St (27.11.01-21.06.04)

Figure 2: Return Rt (28.11.01-21.06.04)

Figure 3: QQ-plot, Rt against normal
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Figure 4: Autocorrelogram of Rt

Figure 5: Autocorrelogram of R2
t

Figure 6: Return R̃t (28.11.01-21.06.04)
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Figure 7: QQ-plot, R̃t against normal

Figure 8: Autocorrelogram of R̃t

Figure 9: Autocorrelogram of R̃2
t
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Figure 10: Estimated weekly periodicity in R̃t, over 14 days

Figure 11: Autocorrelogram of R̃t, weekly periodicity removed using sinusoids

Figure 12: Static AR(2)-ARCH(1) forecast, against R̃2
t (28.11.01-21.06.04)


